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In this paper, we formulate a mathematical model to study the dynamics of submerged and
inclined concentric pipes with di!erent lengths. The governing equations of motion for the inner
pipe are derived under small deformation assumptions and with the consideration of gravi-
tational forces, turbulent boundary layer thickness of external #ow, #uid frictional forces, and
inertia e!ects. We obtain discretized dynamical equations using spatial "nite-di!erence schemes
and calculate the resonant frequencies of a particular pipe system design. In addition, by
varying the operating conditions, we identify a few critical parameters pertaining to the proper
design of such pipe systems. ( 1999 Academic Press
1. INTRODUCTION

IN THE PAPER INDUSTRY, approach #ow systems used to dilute "ber stock with water generally
consist of many pumps, screens, deaerators, and piping components. One of the key
components in these systems is the so-called silo water mixing unit, a cylindrical water
storage tank with a constant water level, as depicted in Figure 1. The inner pipe protruding
into the fan pump inlet zone contains a higher consistency "ber stock, and the concentric
outer pipe collects the recirculation diluted stock. At the inlet end, the outer pipe is welded
on the silo side-wall, and the inner pipe is welded on the outer pipe-wall and connected to
a large elbow. In this paper, we assume both the inner and outer concentric pipes are "xed
at the inlet end. It has been discovered that the turbulent mixing of jets coming out of the
concentric pipes before the fan pump contributes signi"cantly to the smooth operation of
impellers, the uniformity of stock consistency, and the minimization of pressure variations
(Wang et al. 1999). In addition, the turbulent jets may introduce strong oscillations in the
suspended pipes, which can cause structural damage, such as fatigue failure of pipe joints.
Therefore, in a proper silo}pipe system design, vibration problems associated with such
pipes must be understood and resovled.

In this paper, we consider vibration issues that relate directly to the design of the silo
mixing unit, and leave the static and dynamic stability analyses to a forthcoming paper
(Wang & Bloom 1999). The basic goal of this work is to determine the protruded inner
tubular pipe oscillation frequency and damping ratio resulting from both internal and
external #uid #ows. Considering the fact that the inner pipe carries thick "ber stock and has
a much smaller diameter than the outer pipe, we shall focus exclusively on the inner pipe
vibration and address the following issues: (i) what is the frequency range for a given
pipe system design; (ii) what is the e!ect of the angle of inclination; (iii) what is the optimal
0889}9746/99/040443#18 $30.00 ( 1999 Academic Press



Figure 1. Location of the mixing pipe in the silo unit.
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choice of pipe #ow velocities and radii; (iv) what are the critical lengths of the pipes; and (v)
how important is the depth of the submerged pipe system.

The problem analyzed in this paper belongs to a major subject area within the
general realm of #uid}structure interaction problems. The study of #ow-induced vibra-
tions and stability of pipes has a long history, beginning with the work of Benjamin
(1961a, b) and PamKdoussis (1966a, b). A recent survey of the subject is available in Paidoussis
& Li (1993).

The main objective of this paper is to propose a mathematical model for inclined,
submerged, concentric pipes with di!erent pipe lengths. In this model, the #uid forces
exerted by both the con"ned and uncon"ned external #ows are considered. We start with
the derivation of the governing equations of motion in Section 2, and discuss "nite-
di!erence schemes for spatial discritizations in Section 3. Finally, we present, in Section 4
numerical examples for a typical pipe system design along with an analysis to determine
critical design parameters.

2. GOVERNING EQUATIONS OF MOTION

A schematic diagram of the location and general con"guration of the mixing pipe arrange-
ment within the silo is shown in Figure 1. As depicted in Figure 2, the mathematical model
of the suspended concentric pipes includes the inner pipe with a length l and the outer pipe
with a length ¸(l. We note that all the pipes are submerged in silo water, and that
continuous #ow between the two concentric cylinders only occurs in the domain 04x4¸.
Under the action of the gravitational force and #uid forces, i.e. pressure and frictional forces,
the inner pipe will deform and oscillate.

Using the small displacement and small strain assumptions, the body coordinates (m, g, f),
corresponding to the deformed con"guration, can be projected onto the initial coordinates



Figure 2. The concentric piping equilibrium con"guration.
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(x, y, z), as shown in Figure 3, with the following results:
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where the in-plane (x-y plane) and out-of-plane displacements are denoted as y"y (x, t) and
z"z(x, t).

In this paper, we establish the force equilibrium on the deformed con"gurations in order
to retain certain nonlinear terms at the beginning of our derivation. Nevertheless, we shall
focus on the linear vibration analysis and leave the nonlinear analysis of the subject to
a forthcoming paper.

We consider that #uid #ows within the inner tube and the concentric region between the
inner and outer pipes are fully developed turbulent #ows, and express the forces exerted on
the inner tubular beam from the internal and external #uid #ows as (Fim , Fig , Fif) and



Figure 3. Deformed element of the inner tubular beam.
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(Fem , Feg , Fef ) , respectively. As a consequence of equation (1), we may project the internal #uid
forces on the initial coordinates (x, y, z) as follows:
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and similar projections can be obtained with respect to the external #uid forces.
We denote by R

i
the inner radius of the internal pipe; therefore, the internal #uid occupies

a domain with cross-sectional area A
i
"nR2

i
. We also let R

o
and R

e
denote the outer radius

of the internal pipe and the inner radius of the external pipe. In addition, we assign o
i
and

o
e
, ;
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and ;

e
to be the #uid densities, constant averaged turbulent #ow velocities for the

internal and external regions.
We initiate our derivation of the governing equations for y(x, t) and z(x, t) by writting

down the force equilibrium for the inner tubular beam, which has #exural rigidity EI, where
E is the Young's modulus, and I, expressed as I"n(R4

o
!R4

i
)/4, is the moment of inertia of

the tubular beam cross-sectional area.
As depicted in Figure 4, a di!erential element dx of the beam is acted upon by forces due

to gravity g with an inclination angle h, tension ¹, #uid forces (Fim , Fig , Fif ) and (Fem , Feg , Fef ) ,
and transverse shear forces (Q

y
, Q

z
). Following Hannoyer & PamKdoussis (1978), in the

present analysis we discount the in#uence of any moments that may be exerted by the
internal and external #ows. Also depicted in Figure 4 are the bending moments M

y
and M

z
in accord with y (x, t) and z (x, t). In the standard manner, if we ignore viscoelastic damping
e!ects and consider the beam as an Euler}Bernoulli beam with constant cross-sectional
area, the bending moments, M
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, and the shear forces, Q
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Figure 4. Forces acting on a di!erential element of the inner tubular beam.
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Therefore, we ignore the axial inertia e!ect, and derive the governing equations for the
tubular beam as
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where m denotes the mass per unit length of the tubular beam.
Furthermore, from the force equilibrium for the internal #ow [see, for example,

Hannoyer & PamKdoussis (1979), PamKdoussis (1970) and PamKdoussis & Pettigrew (1979)], we
can express the internal #uid forces as follows:
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Finally, we turn our attention to the contributions from the external #uid #ow. We treat
the external #ow a little di!erently because of the fact that we can no longer directly replace
the forces acting on the outer surface of the inner pipe with the equivalent #ow pressure,
inertia, and gravitational forces. We note that we have two di!erent regions to consider, i.e.
the con"ned region 04x(¸ and the uncon"ned region ¸4x4l. However, due to the
outlet opening at the location x"¸, the hydrostatic pressure is continuous in both regions,
and for the tubular beam with a uniform cross-sectional area, the components of the
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net forces attributable to the external hydrostatic and hydrodynamic #uid pressures are
given by
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where p
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and p
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stand for the hydrostatic and hydrodynamic pressures, respectively, and the

cross-sectional area A
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is de"ned as n R2

o
. By denoting the free-surface level measured from

the origin (0, 0, 0) as y
o
, such that the hydrostatic pressure at the tip of the submerged beam

(x"l ) is given by pN "o
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gl sin h, we obtain the expression for the hydrostatic

pressure of the external #uid,
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Moreover, according to Hannoyer & PamKdoussis (1978), PamKdoussis (1973) and PamKdoussis
& Pettigrew (1979), we have the following expression for the hydrodynamic pressure in the
concentric #ow region:

p
o
A

o
"1

2
o
e
D

o
;2

e
C
f
h (x), (12)

where the friction coe$cient C
f
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and Taylor (1952), di!erent values in the con"ned and uncon"ned regions,
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As discussed in Hannoyer & PamKdoussis (1979) and PamKdoussis (1966, 1973), the external
#ow exerts on the tubular beam the following viscous forces per unit length in both the
normal (g, f) and longitudinal (m) directions:
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where D
o

is outer diameter of the inner pipe.
Turning now to the #uid inertia forces, we take x

o
to be the entrance distance associated

with the turbulent boundary layer, de"ne the functions p"1#0)4(x
o
/¸)C1

f
and
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a"0)4C1
f
/p for the con"ned external #ow region, and introduce for the components of the

inertia forces

F2
x
"0,

F2
y
"!so

e
A

oA
L
Lt
#;I

e

L
LxB A

L
Lt
#;

e

L
LxBy , (17)

F2
z
"!so

e
A

o A
L
Lt
#;I

e

L
LxB A

L
Lt
#;

e

L
LxBz ,

where

s"G
R2

e
#R2

o
R2

e
!R2

o

, 04x(¸,

1, ¸4x4l
(18)

and

;I
e
"G
;

e
(1!a (x/¸)2)/p, 04x(¸,

;
e
, ¸4x4l .

(19)

Therefore, the overall external #uid forces are written as
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From this point on, we shall ignore all nonlinear terms that appear in the three sets of
force balance equations, as a consequence of the small displacement and small strain
assumptions. The key point in simplifying the governing equations (4)}(6) is to obtain the
explicit expression for the tension ¹, based on the assumption p
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Using, respectively, the sets of equations (5), (8) and (21), and (6), (9) and (22), it is now an
easy task to derive the following governing linearized equations:
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where the two sets of coe$cients are given by
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Remark II. We recognize that the coe$cients C
2

to C
6

and D
2

to D
6

are variables
depending on the position x. To circumvent the discontinuity at the location x"¸, where
the con"ned and uncon"ned domains are separated, we prescribe a nodal point at that
location.

Remark III. By neglecting nonlinear terms, the governing equations for y(x, t) and z (x, t)
turn out to be decoupled. In addition, we notice that the only di!erence between equations
(25) and (26) occurs in the inhomogeneous terms C

7
and D

7
. However, such a di!erence will

not a!ect the linear dynamic analysis based on the characteristic equations. Therefore, from
here on, we shall deal exclusively with equation (25).

Remark I<. Because of the small displacement and small strain assumptions, we may
ignore the contribution of the term involving y and rewrite the expression for the hydros-
tatic pressure of the external #uid, equation (11), as
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3. NUMERICAL ANALYSIS

Considering the fact that we have third- and fourth-order spatial derivatives in equation
(25), standard C0 "nite elements cannot be used. An elaborate discussion on the use of C1

"nite elements or mixed formulations is available in Bathe (1996) and Zienkiewicz (1977). In
this paper, we employ the method of "nite di!erences to replace the partial di!erential
equation (25) with a set of ordinary di!erential equations with respect to time. Equivalent
di!erence schemes are also used for the boundary conditions in equations (29) and (30). We
de"ne the solution variable y(x, t) at the spatial grid (or nodal) point i as >i(t) (depicted in
Figure 5), and its corresponding time derivative as >Q i(t). Using an equal spacing h between
"nite-di!erence stations, we obtain the following "nite-di!erence approximation for various
di!erentiations:
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In addition, by employing the same "nite-di!erence procedure, we obtain from the
boundary conditions in equations (29) and (30)
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Figure 5. Finite di!erence stations on the tubular beam.
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Therefore, the discretized characteristic equation based on the equilibrium equation (25)
can be written as follows, for node i (14i4N):
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Note that the variable coe$cients C
1

to C
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in equation (27) are functions of x and are
denoted as Ci

1
to Ci

6
at the nodal point i. Moreover, substituting equation (33) into (34)

gives

MYG #CY0 #KY"0, (35)

where Y is the solution vector, and M, C and K stand for the mass, damping (including
gyroscopic terms) and sti!ness algebraic coe$cient matrices, respectively. For the practical
geometries (discussed in detail in the following section), the gyroscopic term governed by C

3
is much more signi"cant than the frictional damping term C

6
, while C

1
is the predominant

sti!ness term. Having the set of second-order ordinary di!erential equations in equa-
tion (35), we can then assume a characteristic solution Y"e*utY< , where Y< is the mode
shape corresponding to the natural frequency of the coupled system u"2nf, and employ
standard eigenvalue solution techniques. Of course, Re( f ) corresponds to the true resonant
frequency, and Im ( f ) represents the damping. The extensive account of the positive Im ( f )
part and other stability issues will be discussed in Wang & Bloom (1999).

4. RESULTS

To "nd the frequency range of a particular pipe system design, we model one system
currently used in the paper industry with the following physical parameters:
o
i
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e
"1000 kg/m3; o"7800 kg/m3; l"2)392 m; ¸"1)135 m; x
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coe$cients, we need to calculate the Reynolds number de"ned as Re"ua/v, where a is
a characteristic length, such as one of the pipe diameters in this case; u is a characteristic
#ow velocity, such as;

i
and;

e
; and v stands for the kinematic viscosity; in this work, we use

v"1)13226]10~6 m2/s. Notice that when Re(104, the friction coe$cients as well as the
viscosity of the "ber}water mixture can be signi"cantly di!erent from those of the pure
water (Daily & Bugliarello 1961).

For the particular con"guration described above, we "nd that

with coupling: f
1
"34)15#0)08467i Hz, f

2
"201)0#0)09622i Hz;

without coupling: f
1
"45)04#0i Hz, f

2
"282)3#0i Hz.



Figure 6. First two coupled system frequencies versus the outer pipe length ¸ (42 grid points with "xed inner
pipe length l"2)392 m).

Figure 7. First two coupled system frequencies versus the inner pipe length l (42 grid points with "xed outer pipe
length ¸"1)135 m).
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Figure 8. First two coupled system frequencies versus the inner radius of the inner pipe R
i
(42 grid points with

"xed inner pipe wall thickness R
o
!R

i
"0)0232 m).

Figure 9. First two coupled system frequencies versus the inner radius of the outer pipe R
e

(42 grid points).
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Figure 10. First two coupled system frequencies versus relative outer and inner pipe length di!erence (l!¸)/l
(42 grid points).
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The analytical solutions for the natural frequencies of the cantilever beam without
coupling to the surrounding #uids are expressed as f

i
"(j2

i
/2nl2)JEI/m , i"1, 2, 3,2,

where j
i
are constants listed, for instance, in Blevins (1979). In addition to the introduction

of damping e!ects, the interaction between the inner tubular beam and the internal and
external #uids signi"cantly diminish the natural frequencies.

To come up with critical design criteria concerning the dynamical behavior of the tubular
beam, we need to vary the pipe lengths, inclination angle, free surface level, #ow velocities,
and pipe radii. We shall hold in this paper, as it is done in practice, the volume #ow rates



Figure 11. Damping ratio of the "rst two coupled system frequencies versus relative outer and inner pipe length
di!erence (l!¸)/l (42 grid points).

456 X. WANG AND F. BLOOM
constant to 8)5277]10~2 m3/s for the internal #ow, and to 7)6705]10~2 m3/s for the
external #ow. In other words, if we reduce the inner pipe radius, the inner #uid #ow velocity
will increase accordingly, and vice versa; the same is true for the outer pipe. In addition,
with a constant free surface level, the external hydrostatic pressure p

e
will vary in accord-

ance with the inner pipe length and the inclination angle. Finally, we vary y
o
, which governs

the depth of the immersed pipe system. However, we recognize that a design parameter such
as y

o
is often related to the fan-pump pressure drop and, in practice, cannot be modi"ed

easily.
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Figure 6 shows the "rst two coupled frequencies of the #uid}structure systemRe( f
1
) and

Re( f
2
) for various outer pipe lengths. As can be seen, the longer the outer pipe, the

smaller are the natural frequencies of the inner pipe, i.e. the increased con"nement of
the inner pipe increases its e!ective (#uid added) mass. In Figure 7, we observe that varying
the inner pipe length has a similar, however, much stronger e!ect on the coupled system
frequencies. The physical explanation is that the inner pipe length determines directly the
inner pipe structural sti!ness and mass (in fact, for a cantilever beam, the natural frequency
is inversely proportional to the square of the beam length), and the outer pipe length only
Figure 12. First two coupled system frequencies versus relative outer and inner pipe radius di!erence
(R

e
!R

o
)/R

e
(42 grid points).
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contributes to the #uid}structure coupling part. In general, if the structure is more #exible,
it is more susceptible to turbulence bu!eting as well as to buckling or #utter. Figures 6 and 7
also show that the coupled system frequencies for the given design con"guration with
di!erent pipe lengths are between the lower and upper bounds calculated for the two cases
in which the inner and outer pipes have the same lengths of l and ¸, respectively.

In addition, we "nd in Figures 6 and 7 that the lengths of the pipes have a much larger
e!ect on the second coupled system natural frequency than the "rst one. This result also
matches the physical understanding based on the dependence of mode shapes on the pipe
Figure 13. Damping ratio of the "rst two coupled system frequencies versus relative outer and inner pipe radius
di!erence (R

e
!R

o
)/R

e
(42 grid points).
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length. Moreover, calculations show that the inclination angle h and the depth of
the submerged pipe system y

o
do not signi"cantly in#uence the characteristic behavior of

the tubular beam.
Concerning the inner pipe radius, Figure 8 shows that for the constant volume #ow rates

that have been assumed, there exists an optimal radius (around 0)16 m in this case), since we
want to maximize the natural frequencies of the inner pipe. Increasing the inner pipe radius
increases the pipe sti!ness but also increases the external #ow velocity and added mass
e!ects. At some point, the velocity and added mass e!ects overwhelm the sti!ening e!ect,
and the inner pipe frequency drops rapidly. In practice, we want to avoid the low frequency
and pressure variations introduced by the low-frequency vibration of the inner pipe, which
may not be e!ectively attenuated.

It is also clearly indicated in Figure 9 that as the outer pipe diameter increases, for
the constant volume #ow rates, the natural frequencies of the inner pipe increase to some
plateau. This occurs because reduced con"nement lowers the added mass e!ects on the
inner pipe and the external #ow velocity decreases until these e!ects no longer change with
increasing outer pipe diameter.

In addition, to further assist in the design of the pipe system, Figures 10, 11, 12 and 13
present the "rst two frequencies Re( f

1
) and Re ( f

2
) and their corresponding damping ratios

Im ( f
1
)/Re( f

1
) and Im( f

2
)/Re( f

2
) as functions of the relative di!erence of outer and inner

pipe length (l!¸)/l and radius (R
e
!R

o
)/R

e
at various outer pipe lengths l and radii R

e
,

respectively. As shown in Figures 10 and 11, the longer the inner pipe, the lower are the
natural frequencies of the inner pipe, but the larger are the damping ratios. The useful
design information shown in Figures 12 and 13 worth mentioning is that, with the same
outer pipe inner diameter R

e
, the smaller the inner pipe diameter represented by R

o
, the

smaller are the natural frequencies of the inner pipe. However, the change of damping ratio
is not monotonic and there exists a region around (R

e
!R

o
)/R

e
"0)94 such that the

damping ratio is at its lowest level.

5. CONCLUSION

The main contribution of this paper is the formulation of a mathematical model for
a submerged concentric pipe system with both uncon"ned and con"ned external #ows.
Using "nite-di!erence schemes, we have calculated the natural frequency range for a given
pipe system con"guration. It is shown that the proposed method can be used to evaluate the
natural frequencies as well as the damping ratios for various design variations. Although, in
practice, due to the existence of a pressure pulsation attenuator and other low-pass "lters,
high-frequency variations can be e!ectively reduced, we still need to separate other vibra-
tion frequencies from the predicted natural frequencies of the inner tubular pipe coupled
with the surrounding #uids in order to avoid resonance.

In addition, by varying di!erent design parameters, we conclude that
(i) by decreasing the inner or outer pipe lengths, we can increase the natural frequencies,

but changing the inner pipe length is more e!ective;
(ii) the inclination angle, the depth of the submerged pipe system, and gravity are not

important design parameters as far as the pipe dynamical behavior is concerned;
(iii) for a piping system with "xed volume #ow rates, there exists an optimal inner pipe

radius;
(iv) in general, the larger the outer pipe radius, the more stable the suspended pipe

system will be; nevertheless, as the outer pipe radius increases, the inner pipe vibration
model approaches that of the case of a singular #exible pipe immersed in an uncon"ned
#uid;
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(v) for the same relative outer and inner pipe length di!erence, the damping ratios
increase with the inner pipe length, while for the same relative outer and inner pipe radius
di!erence, the damping ratios decrease with the external pipe inner radius.

The mathematical model presented in this paper clearly shows much promise in achiev-
ing a proper design for the silo piping system.
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